Hints for Programming Assignment 3

Bijan Soleymani

April 8, 2007

1 Objective

The goal of this assignment is to add networking to your file system and disk
emulation code from PA1 and PA2. Specifically it will be done in a client server
fashion, using TCP/IP for transmission and implementing a simple protocol for
communication.

2 Client vs. Server

There is a sharp distinction between client and server. The client does all the
input and output. That is to say it calls the functions to create files, store
and retrieve data, etc. The server on the other hand is responsible for all the
storage and retrieval. The server handles the FAT, directory table, and so on,
and writes all of these plus the data to a file on the disk.

From the perspective of PA2, the client is now doing what the test code in
main used to do, and the server is doing what the filesystem code used to do.
Except in this case instead of having the test code directly call functions in the
filesystem code, the client must send the request and receive the responses using
TCP/IP.

3 TCP/IP

TCP/IP assures reliable in order delivery of data. We will be using it to move
data as well as request from the client to the server and back again.

The first step in this direction is to write a simple client/server pair that can
exchange an arbitrary block of data. A good example is an echo client/server.
Whatever is typed at the client is sent to the server and is printed to the screen.

You can find the code for this at:



http://www.paulgriffiths.net/program/c/

Once that’s working it’s time to figure out how to send and receive actual
filesystem requests.

4 Protocol

We need to establish rules so that the client and server know how to commu-
nicate with each other. One possibility is to use a fixed size header at the
beginning of every transmission. All this header has to say is, what is being
requested and how much extra data is being transmitted. Each of these can be
represented as an int. And thus the header only needs to be 8 bytes long. You
can transmit and receive it in the following manner:

int request;

int size;

char buffer[8];

//Put request at beginning of buffer

memcpy (buffer, request, sizeof(int));

//Put in second half of buffer

memcpy (buffer+sizeof (int), size, sizeof(int));
//Then send buffer

//0n the receiving end do the reverse

memcpy (request, buffer, sizeof(int));

memcpy (size, buffer+sizeof(int), sizeof(int));

5 Requirements

We need to have a single client communicating with at least 2 servers. Each
server should have a seperate filesystem (that means we can create a file with
the same name on each server and put different data in each).

The only new data structures are on the client side. There should be a table
indicating which filesystem is on which server. So it would contain the 3 fields:
filesystem name, ip address, port number. Another table is necessary to indicate
which file is on which server. It would have the 3 fields: file descriptor number
on client side, server containing the file, corresponding file descriptor on that
server.

6 Test Case

Here is an idea of what PA3 will be expected to do.



run a server on port 8000.

run another server on port 8001.

int i;

char bufferi1[20];

char buffer2[20];

int array[1024];

int filel, file2, file3;

mount ("s1", "localhost", 8000);

mount ("s2", "localhost", 8001);

nfs_1s("s1");

nfs_1s("s2");

filel = nfs_fopen("sl", "a.txt");

nfs_fwrite(filel, "hello", 5);

file2 = nfs fopen("s1", "b.txt");

nfs _furite(file2, "goodbye", 7);

nfs_fclose(file2);

nfs 1s("s1");

file3 = nfs_fopen("s2", "c.txt");

for(i=0;i<1024;i++){
array[i]=ix*i;

}

nfs_furite(file3, array, 1024*sizeof(int));

file2 = nfs_fopen("s2", "a.txt");

nfs_furite(file2, "test", 4);

nfs_fwrite(filel, " world", 6);

nfs_fclose(filel);

nfs_fclose(file2);

nfs_ fclose(file3);

nfs 1s("s2");

filel = nfs fopen("s1", "a.txt");

nfs_fread(filel, bufferl, 11);

file2 = nfs_fopen("s2", "a.txt");

nfs_fread(file2, buffer2, 4);

nfs_fclose(filel);

nfs_fclose(file2);

nfs_remove("s1", "a.txt");

nfs_remove("s2", "b.txt");

nfs 1s("s1");

nfs 1s("s2");

filel = nfs_fopen("s2", "c.txt");

nfs_fread(filel, array, 1024*sizeof(int));

nfs_fclose(filel);

note: make sure to print out the output of the nfs_reads to make sure everything
is worknig properly.



