
Hints for Programming Assignment 2

Bijan Soleymani

14th March 2007

1 Objective

The goal of this assignment is to implement a simple filesystem. This filesys-
tem supports a limited number of files, limited lengths filenames and a single
directory. Free space is managed through a File Allocation Table (FAT).

This filesystem should be implemented on top of the disk emulation code from
programming assignment 1. This means that all read and write operations must
use: read blocks and write blocks. Note that this means you can’t directly use
functions like fread, fwrite or fseek.

2 Data Structures

There are four main data structures: the (root) directory table, the File Allo-
cation Table (FAT), the free block list and the file descriptor table.

The first three are stored on the disk. The last is only stored in memory. A copy
of the structures on disk, is also kept in memory. They should be periodically
written back to the disk.

2.1 Directory Table

The directory table contains (at least) the following information for each file:

• Filename: the name of the file. This can be a fixed length string (e.g. char
name[16])

• Size: the size of the file in bytes.

• Date: the last modification time of the file. Can be stored as an int. Do
something like: date = time(NULL). (don’t forget to #include<time.h>)

1



• FAT index: index of the FAT entry that contains points to the first block
of the file.

You can make a structure of the form:

struct directory entry {
char name[16];
int size;
int date;
int FAT index;

};

And you can make the table be an array of the structures:

struct directory entry directory[MAX FILES];

Where MAX FILES is a reasonable value for the maximum number of files.

2.2 FAT

Each FAT entry contains the index of a block and that of the next FAT entry
for the current file. It can be represented as:

int FAT[NUM BLOCKS][2];

Where FAT[n][0] contains the block corresponding to FAT entry n, and FAT[n][1]
contains the index of the next entry (or EOF if there are no more blocks in the
file). So to go through all the blocks in a file:

temp = directory[i].FAT index;
while(temp!=EOF){

block = FAT[temp][0];
temp = FAT[temp][1];
// Insert code to read or write block

}

2.3 Free Block List

The free block list is a simple array that indicates whether each block is used
or not. So something like:

char free list[NUM BLOCKS];

And something like this to find a free block:

2



i=0;
while(free list[i]!=FREE){

i++;
}

Don’t forget to mark the blocks that contain the Directory table, FAT and free
block list as used. If you forget to do this then sfs write will think they are free
blocks and overwrite them.

2.4 File Descriptor Table

The file descriptor table contains the following information for each open file:

• read ptr: the current read position in the file (in bytes). Should be set to
0 when a file is opened.

• write ptr: the current write position in the file (in bytes). Should be set
to the size of the file, when a file is opened (0 if the file is newly created).

• directory index: index of the directory entry for this file

The data structure will look something like this:

struct fdt entry {
int read ptr;
int write ptrl
int directory index

};
struct fdt entry FDT[MAX FILES]

3 Function Outlines

3.1 void mksfs(int fresh)

Similar to init disk (in fact it can call init disk), but also initializes all the data
structures. If fresh is 0, then read all the data structures from the file. Else
create empty data structures and overwrite the ones in the file.

3.2 void sfs ls()

Print out the contents of the directory table in user friendly form (output should
look a bit like “ls -l” in Linux).

3



3.3 int sfs open(char *name)

Open a file for reading and writing, and creates the file if it doesn’t exist.

If the file exists already, all this does is add an entry in the file descriptor table.

If the file doesn’t exist then it finds a free block, a free FAT entry and a free
directory entry. It then sets the file size to 0, the modification date to the
current date, and sets FAT index to the index of the free FAT entry. Then it
sets the FAT entry to point to the free block, and sets the next to EOF (since
the file only has one block at this time). Finally the free block list is updated
to indicate that the block chosen is no longer free.

The function returns the index of the newly created entry in the file descriptor
table.

3.4 void sfs close(int fileID)

This function just clears the entry in the file descriptor table.

3.5 void sfs write(int fileID, char *buf, int length)

Write length bytes to the disk. Note that you have to do this using the block-
oriented functions read blocks and write blocks. This means that if the writing
occurs in the middle of a block, you’ll have to read the block, add the data after
the preexisting data, and rewrite the block to the disk.

3.6 void sfs read(int fileID, char *buf, int length)

Read length bytes from the disk. Note that you have to do this using the
block-oriented function read blocks. This means that if you are reading from
the middle of a block, you’ll have to read the block, and copy the desired data
to buf.

3.7 int sfs remove(char *file)

Deletes the file. This consists of freeing the blocks used by the file. Clearing
the FAT entries used by the file. And finally clearing the directory entry for the
file.

4


