
 Lecture 6: Jitter

Jitter = time between actual arrival of a task period about to execute and its expected arrival; total jitter will
be the quadrature sum of all independent causes of jitter on a task period’s arrival.
Jitter tolerance = largest amount of jitter that can be handled by a task scheduler and still meet its deadlines;
typically it is the largest time possible between a task period’s actual completion and its deadline.

Sources of task timing jitter:

-poor scheduling
-poor priority handling
-bad algorithms in support packages (eg printf)
-spurious or noise interrupts
-bus contentions (I/O devices)
-non-fixed loop iteration count
-non-fixed number of recursive calls
-garbage collection
-conditional statement execution asymmetry (e.g. if A || B)
-hardware cache unpredictable/unrepeatable performance
-data dependent instruction execution time
-nested multiple priority interrupts
-clock vs delay granularity
-task dependencies (shared resource pre-emption, semaphore availability, synchronous communication)
-context switching of tasks
-hardware latency
-interrupt and priority handling
-scheduler bookkeeping
-clock latency
-spurious interrupting due to noise, power surges, electrical discharges
(watch out: spurious interrupts can cause death spiral of scheduler missed deadlines and run-time stack
memory overflow)

Traditional way of measuring execution time:

Start_counter();
for(I=1; I<1000000; I++)Get_interrupt();
Stop_counter();

-naïve: function call overhead, context switch overhead, for loop time, etc.
-better to use logic analyzer or scope with a probed interrupt register flag
-easy to test and measure, hard to isolate
-interrupts are good for fast response time, but have high resource overhead
-polling is CPU intensive (slow), but cause low resource overhead
-polling jitter => polling period plus/minus epsilon
-interrupt jitter => higher priority interrupt preemption time

Real-time clock requirements and assumptions (clock overheads are clearly defined):
-correctness: (clock – real time) < epsilon always
-bounded drift: dc/dt < p + 1 (for crystals p < 10-5 => 1 sec/day; for earth p < 10-8 => 1 sec/year)
-monotonicity: c2 > c1 if t2 > t1 (eg no Y2K phenomena)
-chronoscopicity: d2c/dt2 < gamma (i.e. if t2 – t1 = t4 – t3, then c2 – c1 = c4 – c3 +/- gamma)

Lecture 6: Jitter (cont.)

External clock issues:
-H/W register updating time and latency
-process synchronization and read computation time
-read process interrupt latency

GPS systems require above issues to be well managed and defined:
Basically how it works is that you solve 4 unknowns with 4 equations using at least 3 satellites:
ti and ri are the measured time and distance (respectively) between satellite i and the desired object at
location (to, xo, yo, zo) emitting a signal that the satellite can detect that you are trying to locate.

ri = cti, where c is the known speed of light (3 x 108 m/s).

ri = (|xo – xi|

2 + |yo – yi|
2 + |zo – zi|

2)1/2 for satellites i=1 to 3.

With each of the ri, we can now solve for the other 3 unknowns (xo,yo,zo) to find the desired object.

