
 Lecture 23: Memory Management

Stacks – Reserved part of CPU R/W main memory that saves the program counter and the register contents
of a running task, and its R/W memory addresses. Physically, it is a block a successive memory locations
accessible on a LIFO basis with a pointer that keeps track of where everything is that’s running. One can
have almost unlimited subroutine nesting and interrupt nesting since the task status and register information
is stored. The operating system accesses the stack via the stack pointer whose registers contain the next
unused address in the respective stack chain. Therefore interrupt handlers can be serviced by the CPU
since the running task registers are stored at its stack pointer location.

Page frames – Program segment in non-contiguous memory usually done in a fixed size block. Dynamic
allocation of memory is slow due to the capacitor charging/discharging, and is unusable with real-time
systems due to the large source of real-time uncertainty, especially in hard real-time applications. Page
stealing quite often occurs when no free frame is available, so a page table is needed, except that it costs
much CPU overhead to maintain.

Swapping – When program size exceeds main memory, processes are moved out of memory to secondary
storage device. However, there can be large context switch overhead when accessing processes in the
secondary storage device. Schedulers can use it only when the task execution time is very large compared
to this context switch overhead.

Overlaying – When program size exceeds main memory, new code and data are brought into memory
replacing old code and data. Obviously, there is much opportunity for data loss and it’s still inefficient.

Partitioning – Memory is separated into fixed sized blocks avoiding the need for swapping. Tasks reside in
contigous partitions, but memory usage is inefficient and can be fragmented. It is useful when the number
and size of tasks is well-known and fixed.

Memory locking – Recommended in real-time applications because paging, swaping, and overlaying is
diminished, but memory contention can occur due to limited memory available. Execution times are much
more predictable thereby enhancing scheduling performance.

 CPU Cache Main Memory Storage Disk
 (sram) DRAM magnetic/optical
access time: 10 nsec 100 nsec 10 usec
typical size: 16 KB 8 MB 1 GB

The Cache is the major source of real-time uncertainty: why?

