

 Lecture 17: Interrupt tools

Interrupts-
External examples: Timers, keyboard, DAQ cards, video cards, serial and parallel
ports, digital logic pulses.
Internal examples: (processor generated) illegal code exceptions, task
scheduling algorithms.
NMI – nonmaskable interrupts: internal or external; avoid when possible,
especially on UARTS or timers and on hard R-T systems. NMI must be re-entrant.
Note: don’t use NMI with edge triggered interrupt (vulnerable to noise); also
ISRs typically cannot be re-entrant during 1st few lines of execution.

Needed interrupt components-
Interrupt vector: connects all interrupts of the system. (INTEL 80x86 contains
256 entries, but most PCs have only 16 interrupts available.) This vector is an
array of pointers to the interrupt service routines that will be triggered when
the corresponding interrupt occurs. The vector also contains a bit for each
interrupt line that signals whether there is an interrupt pending on that line,
i.e., a peripheral device has raised the interrupt, and is waiting to be
serviced.

non-vectored interrupt processing: an interrupt occurs, control is transferred
to one single routine that decides what to do with the interrupt. This approach
is also used in operating systems that allow multiple devices to share the same
interrupt.

Computer system hardware:
-can automatically prevent other interrupts from being serviced as long as the
ISR of the first interrupt is still running,
-can assign a (static) priority to each interrupt, such that the ISR of a lower-
priority interrupt is pre-empted when a higher-priority interrupt is triggered,
-can queue interrupts, such that none of them gets lost.

Interrupt controller: external hardware that shields the operating system from
the electronic details of the interrupt lines and makes the interrupt vector
look like what it should look like in software: a simple vector. It can also
provide just one interrupt input to the CPU.

 Interrupt -> Priority -> interrupt -> control -> CPU
 Register register vector logic

 mask/status
 register

Address Bus __
Data Bus __
Control Bus __

 RAM ROM I/O

 Lecture 14: Interrupt tools (cont)

DMA controller –
H/W solution for efficient transfer of data to/from CPU/memory.
Frees CPU from pulling on external devices that need servicing.
Initiates and controls bus access between external devices and memory.
Does low level buffer filling/emptying for all devices on the data bus.
Controlled by CPU via interrupts and sends messages to CPU via interrupts.
Connected to control/data/address bus.
Address bus keeps tab of the address and counter of the data to be processed.
Control bus signals which device has access to data bus which transports data.
Useful for vertical integration, for example with extra external ROM/RAM.

Interrupt software-
Interrupt Service Routine (ISR): software routine called when an interrupt
occurs on the interrupt line for which the ISR has been registered in the
interrupt vector. Typically, this registration takes place through a system call
to the operating system, but can be done directly by a (sufficiently privileged)
program too. In VxWorks, all routines connect to interrupts using intConnect.
Note: The operating system cannot intervene in the launching of the ISR, because
everything is done by the CPU hardware. The context of the currently running
task is saved on the stack of that task: its address is in one of the CPU
registers, and it is the only stack that the CPU has immediate and automatic
access to. Each task must get enough stack space to cope with ISR overhead; for
nested interrupt applications, this space can become very large. And all ISRs
use the same interrupt stack segment of memory.

Software interrupt tools of the real-time kernel:
-Interrupt enable/disable: Each processor has atomic operations to enable or
disable ("mask") the interrupts.
-Prioritized interrupt disable: technique disables interrupts except those above
a specified priority level. If the processor allows interrupt priorities, most
opportunities/problems that are known in the task show up in the interrupt
handling too.
-Interrupt nesting: If the processor and/or operating system allows interrupt
nesting, ISR servicing of one interrupt can itself be pre-empted by another
interrupt. Interrupt nesting increases code complexity, because ISRs must use
re-entrant code only, i.e. any number of concurrent processes (including itself)
can call them at the same time. Hence, ISRs should be written in such a way
that they are robust against being pre-empted at any time. Some ISR re-entrant
techniques that are used: global and static variables that are protected by
mutual exclusion semaphores and used outside the ISR; private variable copies
of global variables; and data that is provided only by function input arguments.

Software interrupts: not caused by a (asynchronous) hardware event, but by a
specific (synchronous) machine language operation code, such as, for example a
trap (an unexpected software condition or error, such as a divide by zero, or an
undefined instruction.) Linux accepts multiple interrupt handlers on the same
interrupt number. Software interrupt and trap numbers are defined by the
hardware, i.e., they have entries in the interrupt vector. As with a hardware
interrupt, a software interrupt or a trap causes the processor to save the
current state, and to jump to the ISR routine specified in the interrupt vector;
useful for example for debugging – an ISR can be triggered by traps in the code
generated by the debug compiler.

