Lecture 16: Kernels

kernel – smallest portion of operating system that provides for task scheduling, dispatching, intertask communication, synchronization, and concurrency

user applications	=> software programs and GUIs running on top of operating system (O/S)	
\ /		
\ operating system /	=> executive + user interface shell	(interface mgt)
\ executive /	=> kernel + memory storage and I/O	(memory mgt)
\ kernel /	=> micro-kernel + task synchronization/communication	(service mgt)
\ micro-kernel /	=> nano-kernel + task scheduler	(CPU mgt)
\ nano-kernel /	=> task controller and dispatcher	(process mgt)
\/		
hardware layer	=> clock, CPU, ROM, RAM, gates, interrupt registers, context switch logic	

nano-kernel: does task bookkeeping, execution, storage, division of activities, and dispatching

micro-kernel: schedules nano-kernel tasks involving real-time issues (hard or soft), priority management, interrupt handling, and time management

kernel: provides message queues, mailboxes, semaphores, pipes, and sockets to micro-kernel

executive: provides memory and I/O services to the kernel

cyclic executive: executive run as a periodic process by the kernel

Note: Most commercial RTOSes these days are run as cyclic executives. They are efficient, simple, control other periodic processes, predictable, have fast context switching; but they create design contraints, subject to breaking if rescheduling (overhead) is needed. Alternatively can use foreground-background executive.

operating system (O/S): provides file security, file management, and user tool command interface to the executive; acts as an interface to the computer hardware below and the software/user applications above

real-time operation system (RTOS): O/S that allows user access to the low level system services and resources to ensure tasks are predictable, visible, schedulable, concurrent, and dependable:

predictable -tasks will execute within bounded time constraints and meet their assigned deadlines		
visible -tasks can be managed by system services, memory management is available, interrupt		
and fault/exception handling are available, and I/O services are utilized		
schedulable -tasks have time-sharing and priority allocation and access to CPU using static or		
dynamic priority handling management		
concurrent -tools are provided for task communication and synchronization and resource sharing		
such as mailboxes, semaphores, message queues		
dependable -tasks will meet their deadlines even if system faults occur		
Other features:		
-keeps list of task pointers for scheduling on the stack		
-manages stack memory, cache, on-board memory		
-compiler library support and optional debugging services		
-provides floating point support		
-is as small as possible (5 – 20 KB of ROM)		
-has network management (e.g. FTP, SNMP)		
-provides device driver support including I/O and other embedded hardware initialization		
-does task management and scheduling		
-provides task communication tools like mailboxes, message queues, global memory, semaphores		
-provides clock, timing services, counter functions, internal interrupt handling		
-allows external interrupt register access and polling		
-enables interrupt priority levels		
-allows creation and initialization of software system devices		