
Lecture 16: Kernels

kernel – smallest portion of operating system that provides for task scheduling, dispatching, intertask
communication, synchronization, and concurrency

 user applications => software programs and GUIs running on top of operating system (O/S)
\ /
 \ operating system / => executive + user interface shell (interface mgt)
 \ executive / => kernel + memory storage and I/O (memory mgt)
 \ kernel / => micro-kernel + task synchronization/communication (service mgt)
 \ micro-kernel / => nano-kernel + task scheduler (CPU mgt)
 \ nano-kernel / => task controller and dispatcher (process mgt)
 __________/
 hardware layer => clock, CPU, ROM, RAM, gates, interrupt registers, context switch logic

nano-kernel: does task bookkeeping, execution, storage, division of activities, and dispatching

micro-kernel: schedules nano-kernel tasks involving real-time issues (hard or soft), priority management,
interrupt handling, and time management

kernel: provides message queues, mailboxes, semaphores, pipes, and sockets to micro-kernel

executive: provides memory and I/O services to the kernel
cyclic executive: executive run as a periodic process by the kernel
Note: Most commercial RTOSes these days are run as cyclic executives. They are efficient, simple, control
other periodic processes, predictable, have fast context switching; but they create design contraints, subject
to breaking if rescheduling (overhead) is needed. Alternatively can use foreground-background executive.

operating system (O/S): provides file security, file management, and user tool command interface to the
executive; acts as an interface to the computer hardware below and the software/user applications above

real-time operation system (RTOS): O/S that allows user access to the low level system services and
resources to ensure tasks are predictable, visible, schedulable, concurrent, and dependable:

predictable -tasks will execute within bounded time constraints and meet their assigned deadlines
visible -tasks can be managed by system services, memory management is available, interrupt
 and fault/exception handling are available, and I/O services are utilized
schedulable -tasks have time-sharing and priority allocation and access to CPU using static or
 dynamic priority handling management
concurrent -tools are provided for task communication and synchronization and resource sharing
 such as mailboxes, semaphores, message queues
dependable -tasks will meet their deadlines even if system faults occur
Other features:

 -keeps list of task pointers for scheduling on the stack
 -manages stack memory, cache, on-board memory
 -compiler library support and optional debugging services
 -provides floating point support
 -is as small as possible (5 – 20 KB of ROM)
 -has network management (e.g. FTP, SNMP)
 -provides device driver support including I/O and other embedded hardware initialization
 -does task management and scheduling
 -provides task communication tools like mailboxes, message queues, global memory, semaphores
 -provides clock, timing services, counter functions, internal interrupt handling
 -allows external interrupt register access and polling
 -enables interrupt priority levels
 -allows creation and initialization of software system devices

